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Background: Animal and epidemiologic studies indicate that air pollution may adversely affect 

fertility. However, the level of evidence is limited and specific pollutants driving the association 

are inconsistent across studies.

Methods: We used data from a web-based preconception cohort study of pregnancy planners 

enrolled during 2013–2019 (Pregnancy Study Online; PRESTO). Eligible participants self-

identified as female, were aged 21–45 years, resided in the United States (U.S.) or Canada, 

and were trying to conceive without fertility treatments. Participants completed a baseline 

questionnaire and bi-monthly follow-up questionnaires until conception or 12 months. We 

analyzed data from 8,747 participants (U.S.: 7,304; Canada: 1,443) who had been trying to 

conceive for < 12 cycles at enrollment. We estimated residential ambient concentrations of 

particulate matter < 2.5 μm (PM2.5), nitrogen dioxide (NO2), and ozone (O3) using validated 

spatiotemporal models specific to each country. We fit country-specific proportional probabilities 

regression models to estimate the association between annual average, menstrual cycle-specific, 

and preconception average pollutant concentrations with fecundability, the per-cycle probability 

of conception. We calculated fecundability ratios (FRs) and 95% confidence intervals (CIs) and 

adjusted for individual- and neighborhood-level confounders.

Results: In the U.S., the FRs for a 5-μg/m3 increase in annual average, cycle-specific, and 

preconception average PM2.5 concentrations were 0.94 (95% CI: 0.83, 1.08), 1.00 (95% CI: 0.93, 

1.07), and 1.00 (95% CI: 0.93, 1.09), respectively. In Canada, the corresponding FRs were 0.92 

(95% CI: 0.74, 1.16), 0.97 (95% CI: 0.87, 1.09), and 0.94 (95% CI: 0.80, 1.09), respectively. 

Likewise, NO2 and O3 concentrations were not strongly associated with fecundability in either 

country.

Conclusions: Neither annual average, menstrual cycle-specific, nor preconception average 

exposure to ambient PM2.5, NO2, and O3 were appreciably associated with reduced fecundability 

in this cohort of pregnancy planners.
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1. Introduction

Infertility, defined as the inability to conceive during 12 months of unprotected intercourse, 

affects 10–15% of reproductive-aged couples in the United States (U.S.) and Canada 

(Bushnik et al., 2012; Thoma et al., 2013; Chandra et al., 2013). Infertility can exact a 

substantial emotional and financial toll on affected couples. Fertility treatments have an 

annual healthcare cost of over $5 billion in the U.S. (Stephen et al., 2016; Sunderam et 

al., 2018), and are inaccessible to large portions of the population (Chandra et al., 2014; 

Chin et al., 2015; Seifer et al., 2008; Sunderam et al., 2018; Liu et al., 2021). As couples 

delay childbearing, infertility rates and use of fertility treatments are expected to increase 

(Chandra et al., 2014). Therefore, identification of factors that influence the probability of 

spontaneous (medically-unassisted) conception is an important public health goal.

Epidemiologic research indicates that air pollution may adversely affect fertility (Carre 

et al., 2017; Checa Vizcaino et al., 2016). Ecologic studies in the U.S. (Xue and Zhu, 
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2018b), Spain (Nieuwenhuijsen et al., 2014), and China (Xue and Zhu, 2018a) have found 

that counties or census tracts with higher levels of air pollution have lower fertility rates. 

Associations between air pollution and markers of fertility have also been reported in studies 

of couples undergoing in vitro fertilization (IVF) (Boulet et al., 2019; Choe et al., 2018; 

Dai et al., 2021; Gaskins et al., 2018, 2019; Iodice et al., 2021; Jin et al., 2022; Legro et 

al., 2010; Li et al., 2020; Liu et al., 2022, 2023; Qiu et al., 2019; Shi et al., 2021; Tartaglia 

et al., 2022; Wu et al., 2021, 2023; Zeng et al., 2020; Zhang et al., 2022; Quraishi et al., 

2019) and among couples trying to conceive spontaneously (Li et al., 2021; Mahalingaiah 

et al., 2016; Mendola et al., 2017; Nobles et al., 2018; Slama et al., 2013; Wesselink et al., 

2020, 2022). However, the pollutants associated with reduced fertility and the window of 

exposure during which an association was observed were not consistent across studies. For 

example, long-term PM2.5 concentrations have generally not been strongly associated with 

reduced fertility (Mahalingaiah et al., 2016; Wesselink et al., 2022; Quraishi et al., 2019) 

(with the exception of a retrospective cohort in China) (Li et al., 2021), whereas PM2.5 

concentrations across the menstrual cycle and during specific critical windows of IVF (e.g., 

between oocyte retrieval and embryo transfer) were associated with reduced fertility in some 

(Gaskins et al., 2019; Slama et al., 2013; Wesselink et al., 2022), but not all (Legro et al., 

2010; Nobles et al., 2018) studies (Liu et al., 2023). Similar inconsistencies in the relevant 

timing of exposure exist for studies examining NO2 (Choe et al., 2018; Gaskins et al., 2019; 

Legro et al., 2010; Nobles et al., 2018; Wesselink et al., 2022; Quraishi et al., 2019) and O3 

(Choe et al., 2018; Gaskins et al., 2019; Legro et al., 2010; Nobles et al., 2018; Wesselink et 

al., 2022).

Air pollution exposure could influence fertility through several hypothesized mechanisms. 

Animal (Gai et al., 2017; Ogliari et al., 2013; Veras et al., 2009) and human (Gaskins 

et al., 2019) studies indicate that air pollution exposure could accelerate reproductive 

aging through depletion of primordial follicles or effects on oocyte quality. Air pollution 

exposure more proximal to each menstrual cycle has been associated with cycle length 

(Merklinger-Gruchala et al., 2017) and reproductive hormone concentrations (Ye et al., 

2020) in epidemiologic studies. Acute exposures may influence inflammatory and oxidative 

stress pathways that affect oocyte maturation and endometrial receptivity (Nobles et al., 

2018). Therefore, examination of multiple critical windows of exposure can provide insight 

into relevant etiologic mechanisms.

In the present report, we examined the association between annual average, menstrual 

cycle-specific, and preconception average residential ambient air pollution concentrations 

with fecundability, the per-cycle probability of conception, within a large web-based 

preconception cohort study.

2. Methods

2.1. Study design and population

Pregnancy Study Online (PRESTO) is a web-based prospective cohort study of couples 

trying to conceive (Wise et al., 2015). Recruitment, primarily through social media, 

began in June 2013 and is ongoing. Potential participants complete an online screener 

questionnaire to determine eligibility. Eligible participants self-identify as female, are aged 
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21–45 years, reside in the U.S. or Canada, and are trying to conceive without use of fertility 

treatment. Participation involves completion of a baseline questionnaire and brief follow-up 

questionnaires every eight weeks for up to 12 months. The baseline questionnaire ascertains 

information on socio-demographics, lifestyle factors, medical history, and reproductive 

health. Follow-up questionnaires collect data on pregnancy status and update information 

on exposures and covariates.

In the present analysis, we included 10,490 participants who enrolled in the study between 

June 2013 and April 2019 (Figure S1). We excluded 200 participants with implausible 

menstrual cycle data at baseline, 1,153 participants who had been trying to conceive for ≥ 

12 cycles at enrollment, 330 participants whose addresses could not be geocoded, and 60 

participants who resided in Hawaii, Alaska, or U.S. territories. The final analytic sample (n 

= 8,747) included 7,304 participants residing in the contiguous U.S. and 1,443 participants 

residing in Canada.

2.2. Exposure assessment

On baseline and follow-up questionnaires, participants reported their residential addresses. 

We geocoded addresses using ArcGIS 10.3 (ESRI, Redlands, CA), as previously described. 

(Wesselink et al., 2020) We predicted residential ambient concentrations of PM2.5, NO2, and 

O3 at each residential address using national-level spatiotemporal models, separately for the 

U.S. and Canada, given differences in data availability and quality.

In the U.S., we predicted two-week average concentrations of PM2.5, NO2, and O3 at the 

residential address of each participant from 2012 to 2019. Briefly, we used a regionalized 

hierarchical spatiotemporal model that was originally developed at University of Washington 

for the Multi-Ethnic Study of Atherosclerosis and Air Pollution (MESA Air) and has 

been expanded to a national scale (Bergen et al., 2013; Keller et al., 2015; Kirwa et 

al., 2021; Sampson et al., 1994; Szpiro et al., 2009; Wang et al., 2016, 2018; Young 

et al., 2016; Wang et al., 1994). The model operates at the continuous spatial scale and 

characterizes the two-week average air pollution surface at precisely-geocoded locations 

as a linear combination of temporal basis functions with spatially-varying co-efficients 

and spatiotemporal residuals. It utilizes universal kriging to incorporate dependence on 

a large suite of geographic, meteorologic, and census covariates. It also uses smoothing 

through a spatial random effect and incorporates extensive regulatory and research ground-

level monitoring data. The ground-level monitoring dataset comprised approximately 1,500 

regulatory monitors and 940 investigator-deployed non-regulatory monitors across the U.S. 

and was supplemented with satellite measures of tropospheric NO2. We divided the U.S. into 

climatic/topographic regions (nine for PM2.5; three for NO2 and O3) to facilitate nationwide 

estimation that accounts for sub-national region-specific features and pollution processes 

and applied smoothing at regional boundaries to avoid artificial discontinuities. The model 

has been validated using a suite of cross-validation techniques, including prediction of 

spatial and temporal contrasts (Keller et al., 2015; Sampson et al., 1994).

In Canada, we estimated monthly concentrations of PM2.5, NO2, and O3 at each 

participant’s residential address. For prediction of PM2.5, we combined Aerosol Optical 

Depth retrievals from NASA MODIS, MISR, and SeaWIFS satellites with the GEOS-Chem 
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chemical transport model (van Donkelaar et al., 2019). We then calibrated estimates with 

measurements of regional ground-based PM2.5 using a geographically-weighted regression 

method (van Donkelaar et al., 2019). For NO2 estimates, we combined a land-use regression 

model with geographically-varying monthly scaling factors derived from the Canada Air 

Pollution Surveillance monitoring data, as has been done in other contexts (Bechle et al., 

2015). The land-use regression model is a nationwide model developed using monitoring 

data from 179 sites during 2014–2016 to capture spatial gradients across Canada. Predictor 

variables in the final model included satellite based NO2, Normalized Difference Vegetation 

Index (NDVI; a measure of green space) within 250 m, population within 20 km, length of 

railways within 750 m, average temperature within 10 km, area of industrial land use within 

10 km, and length of expressways and highways within 250 m. We created a 30 m resolution 

raster for the final NO2 predictions. Monthly scaling factors were created based on Bayesian 

kriging and applied to the land use regression model to calculate monthly estimates of NO2. 

For O3, we used a combination of a hybrid O3 prediction system with a geographically 

varying monthly scaling factor derived from monitoring data to predict monthly 8-hour 

maximum concentrations. We used the monthly O3 surface for 2015, developed from the 

hourly ground level O3 concentration estimates from Global Environmental Multi-scale 

Modelling Air Quality and Chemistry, which incorporates ground-level observation data to 

calibrate hourly O3 predictions at a 10-km2 resolution (The Canadian Urban Environmental 

Health Research Consortium, 2021). We based monthly estimates on the monthly average 

of the highest rolling 8-hour average concentration (The Canadian Urban Environmental 

Health Research Consortium, 2021). We developed spatiotemporal scaling factors for each 

month at each monitor from the Canada National Air Pollution Surveillance monitoring data 

(Government of Canada, 2022). For each month, we created an interpolated surface based on 

the monitor scaling factors at each monitor using Bayesian kriging and applied the monthly 

scaling surfaces to the 2015 predicted estimates to generate monthly O3 estimates from 2012 

to 2019.

2.3. Outcome assessment

Fecundability, defined as the per-cycle probability of conception, is a sensitive, couple-based 

marker of fertility (Weinberg et al., 1989). We operationalized fecundability as time-to-

pregnancy by calculating the number of discrete menstrual cycles each participant took to 

conceive. At baseline, participants reported how many menstrual cycles they had been trying 

to conceive. On baseline and follow-up questionnaires, participants reported the date of 

their last menstrual period (LMP) and their menstrual cycle regularity and length. We used 

these responses to estimate the dates of each menstrual cycle, which we used in calculating 

exposure measures (see Section 2.5). On follow-up questionnaires, participants reported if 

they were currently pregnant, had experienced any pregnancy losses since their previous 

questionnaire, if they had initiated fertility treatment, and (if not currently pregnant) if 

they were still trying to conceive. Participants who reported a pregnancy were asked how 

the pregnancy was confirmed (e.g., urine test, blood test, ultrasound); more than 95% of 

participants reported using home pregnancy tests to confirm their pregnancy. For participants 

who were lost to follow-up, we identified outcome information by contacting participants 

directly via phone or email, searching for birth announcements and baby registries online, 

and linking with birth registries in selected states (CA, FL, MA, MI, OH, PA, and TX). For 

Wesselink et al. Page 5

Environ Int. Author manuscript; available in PMC 2024 February 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



participants whose outcome information we found using these methods (43% of those lost to 

follow-up), we calculated their LMP date as due date – 280 days, which we used to estimate 

time-to-pregnancy.

2.4. Covariate assessment

We collected individual-level covariate data on the baseline questionnaire, including 

sociodemographic characteristics (age, race/ethnicity [based on self-report using categories 

and allowing participants to check all that apply], annual household income, educational 

attainment), lifestyle factors (physical activity, smoking, use of multivitamins or folic 

acid), reproductive history (history of infertility, parity), and intensity of trying to conceive 

(intercourse frequency, doing something to improve chances of conception such as timing 

intercourse to the fertile window). We collected data on neighborhood-level covariates from 

various sources. We used the U.S. and Canadian Census block population data to estimate 

the population within 5,000 m around the residence. We obtained data on residential green 

space exposure using NDVI from the Landsat 8 satellite (U.S. Geological Survey, Reston, 

VA), which we downloaded from Google Earth Engine (Google, Mountain View, CA), 

and estimated the annual maximum NDVI within 50 m of each participant’s residence 

(informed by previous work in this cohort) (Willis et al., 2023). We acquired data on 

ambient temperature from the Global Land Data Assimilation System (GLDAS) version 2.1 

(Rodell et al., 2004), which is derived using ground and satellite observations combined 

with land surface models and data assimilation techniques to predict three hour temporal 

resolution and a horizontal spatial resolution of 0.25 decimal degrees (Colston et al., 2018; 

Ji et al., 2015). Finally, we linked participant addresses to 2010 Census tract data on median 

household income, % of census tract with < high school education, and % of census tract 

that identifies as non-Hispanic white (or, in Canada, % visible minority, defined as persons 

other than Aboriginal peoples who are non-Caucasian or non-white).

2.5. Statistical analysis

We conducted all analyses in parallel in the U.S. and Canada, due to the differences in 

exposure assessment methods and contextual differences (e.g., healthcare access, social 

context) across the two countries. We used life-table methods to calculate the proportion 

of participants who conceived during the study period. We used an Anderson-Gill data 

structure, with one observation per menstrual cycle, to allow for delayed entry into the risk 

set and to update exposures over time (Howards et al., 2007; Schisterman et al., 2013). 

Participants contributed follow-up time until the cycle of conception or experience of a 

censoring event (initiation of fertility treatment, stopped trying to conceive, 12 cycles of 

attempt time, or lost to follow-up), whichever came first. We fit proportional probabilities 

regression models (log-binomial regression models with an indicator variable for cycle at 

risk to account for the decline in baseline fecundability with increasing attempt time) to 

estimate fecundability ratios (FRs) and 95% confidence intervals (CIs). The FR represents 

the per-cycle probability of conception for a given exposure contrast; FRs<1 indicate 

an exposure associated with reduced fecundability. We analyzed each participant’s first 

pregnancy during the study period only.
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We estimated exposure concentrations during three different time periods: 1) concentrations 

during the year before enrollment, 2) time-varying menstrual cycle-specific concentrations 

[i.e., average concentrations from the first to last day of each menstrual cycle], and 3) 

preconception average menstrual cycle-specific concentrations [i.e., average from study 

enrollment through the most recent menstrual cycle]. For the 4% of participants who 

changed residences during the study period, we updated their address and air pollution 

concentrations accordingly. We examined exposure linearly (i.e., estimated the FR for 

a 5-unit increase in exposure) and categorically (with categories derived based on the 

distribution in the cohort: <6, 6-<8, 8-<10, and ≥ 10 μg/m3 for PM2.5, <4, 4-<8, 8-<12, and 

≥ 12 ppb for NO2, and < 24, 24-<30, 30-<36, 36-<42 and ≥ 42 ppb for O3, with the top two 

O3 categories combined in the U.S. and the bottom two O3 categories combined in Canada, 

based on the different distributions across countries).

We selected confounders a priori based on a literature review and a directed acyclic graph. 

In final models, we adjusted for age (<25, 25–29, 30–34, 35–39, ≥40 years), annual 

household income (<50,000, 50,000–99,999, 100,000–149,999, ≥150,000 U.S. dollars), 

educational attainment (≤12, 13–15, 16, ≥17 years), parity (nulliparous, parous), race/

ethnicity (conceptualized as a social construct manufactured to justify systems of oppression 

and privilege; Hispanic, non-Hispanic Black, non-Hispanic Asian, non-Hispanic white, non-

Hispanic mixed or other race), population within 5,000 m (quintiles), annual maximum 

NDVI within 50 m (quintiles), cycle-specific average ambient temperature (quintiles), 

census tract median household income (quintiles), % of census tract with < high school 

education (quintiles), % of census tract that identifies as non-Hispanic white (quintiles), 

season and year of each cycle, and geographic region (U.S.: Pacific [CA, OR, WA], 

Mountain [AZ, CO, ID, MT, NM, NV, UT, WY], West North Central [IA, KS, MN, MO, 

NE, ND, SD], West South Central [AR, LA, OK, TX], East North Central [IL, IN, MI, 

OH, WI], East South Central [AL, KY, MS, TN], South Atlantic [DE, DC, FL, GA, MD, 

NC, SC, VA, WV], Mid-Atlantic [NJ, NY, PA], New England [CT, MA, ME, NH, RI, VT]; 

Canada: British Columbia, Alberta, Manitoba/Saskatchewan/ Northwest Territories/Yukon, 

Quebec, Ontario, eastern provinces). Finally, we adjusted each model for copollutants (i.e., 

for models of PM2.5, we adjusted for NO2 and O3 concentrations.).

Loss to follow-up differed across categories of air pollution concentrations. For example, in 

the U.S., 21% of participants with annual average NO2 concentrations ≥ 12 ppb were lost to 

follow-up, compared with 12% of participants with concentrations < 4 ppb. We used inverse 

probability of continuation weights to account for differential loss to follow-up (Hernan et 

al., 2000; Howe et al., 2016). as has been previously described in this cohort (Wesselink 

et al., 2018; Wesselink et al., 2018). Briefly, we calculated stabilized weights that were 

inversely proportional to the probability of remaining in the study at each cycle. By applying 

these weights to our regression models, we reweighted the population so that it was balanced 

for factors related to loss to follow-up.

We conducted several sensitivity analyses. First, we restricted models to nulliparous 

participants to minimize the potential for reverse causation, wherein couples may change 

residential locations after having their first child. In other words, where participants live 

when they enroll in the study may be influenced by their demonstrated fertility. Second, 
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we restricted models to participants living in urban areas to reduce residual confounding by 

urbanicity. Next, we restricted analyses to participants who had been trying to conceive for 

< 3 cycles at enrollment, a group in whom outcome misclassification is less likely (due to 

shorter attempt time) and confounder misclassification is minimized (due to behavior change 

stemming from concerns about fertility) (Wise et al., 2020). Because ambient air pollution 

may have a stronger effect on populations with low socioeconomic status, we conducted 

stratified analyses by educational attainment (<college degree vs. college degree or higher) 

and household income (<$75,000 vs. ≥$75,000 USD/year). Finally, we stratified by age (<30 

vs. ≥ 30 years) to determine whether older participants were more sensitive to air pollution 

exposure.

We used multiple imputation with fully conditional specification methods (van Buuren, 

2007) to account for missing data. Missingness was generally low for covariates, ranging 

from 0% (e.g., age) to 3% (household income). We did not have missing exposure data. For 

the 13% of participants who did not complete any follow-up questionnaires, we assigned 

them one cycle of follow-up and imputed their outcome status at that cycle. We conducted 

a sensitivity analysis restricting to participants who completed at least one follow-up 

questionnaire. For analysis, we statistically combined estimates across the 20 imputed data 

sets using Rubin’s rule (Rubin, 2004).

3. Results

The 8,747 participants included in the analysis resided in all 48 contiguous U.S. states 

and all 10 Canadian provinces, and most participants resided in urban areas (72%). After 

accounting for censoring, 78% of participants from the U.S. and 74% of participants from 

Canada conceived during 12 cycles of pregnancy attempt time. Cycle-specific concentrations 

of PM2.5 were slightly higher in the U.S. compared with Canada (median = 7.3 and 6.1 

μg/m3 (), respectively; Figure S2), and showed seasonal variation in both countries, with 

peaks in January and July every year (Figure S5). NO2 concentrations were similar in 

the U.S. and Canada (median = 6.2 and 6.5 ppb, respectively; Figure S3), and peaked 

annually in January in both countries (Figure S5). Conversely, O3 concentrations were 

higher in Canada than in the U.S. (median = 34.3 and 26.3 ppb, respectively; Figure S4), 

and we observed strong seasonal trends in both countries (peak in the summer; Figure S5). 

Spearman correlations between air pollutant concentrations are presented in Tables S1 and 

S2.

Ambient air pollution concentrations were moderately correlated with individual-level 

sociodemographic characteristics (Tables 1, S3, and S4). For example, non-Hispanic white 

individuals tended to have lower ambient concentrations of PM2.5 and NO2, but higher 

concentrations of O3 compared with other racial/ethnic groups. Air pollution concentrations 

were also related to neighborhood-level characteristics. PM2.5 and NO2 concentrations 

correlated positively with urbanicity and population density and inversely with NDVI; 

associations were in the opposite direction for O3.

In adjusted models, PM2.5 concentrations during any of the three measured time windows 

were not appreciably associated with fecundability in either the U.S. or Canada (Table 
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2). Adjusted models were generally slightly attenuated relative to unadjusted models, with 

several individual (e.g., race/ethnicity) and neighborhood level (e.g., NDVI, census tract 

median household income) covariates contributing to the change in estimate. In the U.S., 

the FRs for a 5-μg/m3 increase in annual average, cycle specific, and preconception average 

PM2.5 concentrations were 0.94 (95% CI: 0.83, 1.08), 1.00 (95% CI: 0.93, 1.07), and 1.00 

(95% CI: 0.93, 1.09), respectively. In Canada, the corresponding FRs were 0.92 (95% 

CI: 0.74, 1.16), 0.97 (95% CI: 0.87, 1.09), and 0.94 (95% CI: 0.80, 1.09), respectively. 

Likewise, restricted cubic spline analyses did not show strong associations between PM2.5 

concentrations and fecundability (Fig. 1). There was some evidence of an association 

between preconception average PM2.5 concentrations and lower fecundability, but results 

were non-monotonic in the U.S. and imprecise in Canada.

For NO2 concentrations, no consistent monotonic associations with fecundability were 

observed in either country (Table 2). FRs for a 5-ppb increase in annual average, cycle 

specific, and preconception average NO2 concentrations were 1.04 (95% CI: 0.98, 1.10), 

1.01 (95% CI: 0.96, 1.06), and 1.02 (95% CI: 0.97, 1.08), respectively in the U.S. and 

0.94 (95% CI: 0.79, 1.11), 0.95 (95% CI: 0.83, 1.10), and 0.97 (0.82, 1.13), respectively 

in Canada. Restricted cubic spline analyses showed a slight inverted-U shape in the U.S., 

particularly for annual average NO2 concentrations; in Canada, increasing concentrations of 

all three measures of NO2 were associated with slightly lower fecundability, but estimates 

were imprecise (Fig. 2).

O3 concentrations were also not strongly associated with fecundability in either country, 

with patterns essentially the inverse of those observed for NO2 (Table 2; Fig. 3). FRs for a 5-

ppb increase in annual average, cycle specific, and preconception average O3 concentrations 

were 0.99 (95% CI: 0.94, 1.05), 1.00 (95% CI: 0.97, 1.03), and 0.99 (95% CI: 0.96, 1.02), 

respectively in the U.S. and 1.08 (95% CI: 0.94, 1.25), 1.02 (95% CI: 0.94, 1.09), and 1.02 

(95% CI: 0.95, 1.11), respectively in Canada.

When we restricted to nulliparous participants (Table S5), annual average PM2.5 

concentrations were inversely associated with fecundability in the U.S. and Canada (FRs 

for a 5-μg/m3 increase were 0.88 [95% CI: 0.74, 1.04] and 0.81 [95% CI: 0.57, 1.15], 

respectively). The results for other exposure metrics were similar to the main analysis. 

Results were consistent with the main analysis when we restricted to participants with < 

3 cycles of attempt time at enrollment (Table S6) or participants residing in urban areas 

(Table S7). Likewise, there were not meaningful and consistent differences across strata of 

educational attainment (Table S8), household income (Table S9), or age (Table S10). Finally, 

results were similar when we restricted to participants who completed at least one follow-up 

questionnaire (Table S11), with the exception of annual average PM2.5 concentrations and 

fecundability in Canada, which were stronger than the primary analysis.

4. Discussion

In this prospective cohort study of pregnancy planners residing in the U.S. or Canada, we 

found that residential ambient concentrations of PM2.5, NO2, and O3 were not strongly 

or monotonically associated with fecundability. We analyzed exposures during the year 
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before study enrollment, during each pregnancy attempt cycle, and averaged across the 

preconception period to address different hypothesized etiologic processes. None of the 

three exposure windows showed a strong deleterious effect of pollutants on fertility.

Studies examining the association of PM2.5 exposure with fertility have reported mixed 

findings. Long-term PM2.5 concentrations were associated with lower fertility in a 

retrospective cohort study conducted in China (Li et al., 2021) but not in a prospective 

cohort study of U.S. nurses (Mahalingaiah et al., 2016), a Danish preconception cohort study 

(Wesselink et al., 2022), or a study of couples undergoing IVF at four U. S. fertility clinics 

(Quraishi et al., 2019). Median annual PM2.5 concentrations in the Chinese study were much 

higher (56.8 μg/m3) than in other studies (14.6, 9.6, and 8.7 μg/m3, respectively), which 

could explain the discrepancy. Our results (median PM2.5 concentrations were 7.5 μg/m3 in 

the U.S. and 6.5 μg/m3 in Canada) are consistent with the null results from similar studies 

in low exposure settings (Mahalingaiah et al., 2016; Wesselink et al., 2022; Quraishi et al., 

2019) and indicate that long-term PM2.5 exposure may only be harmful for fertility at high 

levels.

Other studies have assessed short-term PM2.5 exposure in relation to fertility. Several have 

measured cycle-specific concentrations: a birth cohort study in the Czech Republic (Slama 

et al., 2013) and a Danish preconception cohort study (Wesselink et al., 2022) found inverse 

associations between cycle-specific PM2.5 concentrations and fecundability, whereas a U.S. 

preconception cohort study did not (Nobles et al., 2018). Our results are consistent with 

the latter. Finally, studies of populations undergoing IVF have assessed exposure at even 

finer windows. In the EARTH study, higher PM2.5 concentrations during ovarian stimulation 

and from oocyte retrieval to embryo implantation were associated with higher probability of 

IVF failure (Gaskins et al., 2019). However, another IVF cohort did not find an association 

between PM2.5 concentrations during critical windows and fertility (Legro et al., 2010). We 

cannot make direct comparisons between our findings and those from IVF studies owing 

to differences in the temporal resolution of pollution data (two-week vs. daily resolution) 

and lack of accurate information on the timing of early pregnancy events (e.g., conception, 

implantation) in our cohort.

We found little association between NO2 concentrations and fecundability, which agrees 

with other studies of long-term NO2 exposure, including a Danish preconception cohort 

study (Wesselink et al., 2022) and a study of couples undergoing IVF at four clinics 

in the U.S. (Quraishi et al., 2019). However, studies that have examined acute NO2 

exposure during narrow developmental windows have observed associations with fertility. 

Specifically, three studies of couples undergoing IVF, two in the U.S. (Gaskins et al., 

2019; Legro et al., 2010) and one in Korea, (Choe et al., 2018) found that NO2 

concentrations during ovarian stimulation were associated with lower probabilities of 

intrauterine pregnancy and live birth. A preconception cohort study of couples from 

Michigan and Texas, U.S., found that NOx concentrations 8 days after ovulation, but not 

at other time points or averaged across the menstrual cycle, were associated with reduced 

fecundability (Nobles et al., 2018).
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We found no meaningful association between O3 concentrations and fecundability, in 

agreement with most of the literature on this topic, including a Danish preconception cohort 

study (Wesselink et al., 2022) and three IVF cohorts (Choe et al., 2018; Gaskins et al., 2019; 

Legro et al., 2010). However, the preconception cohort study of couples from Michigan 

and Texas mentioned above found an association between O3 concentrations on 5 and 1 

days before ovulation, but not on other specific days or averaged across the menstrual cycle 

(Nobles et al., 2018). The difference in timing of exposure assessment in the latter study 

could explain the discrepant results, as could chance.

Previous studies, both in couples trying to conceive spontaneously and through IVF, have 

shown consistently that residential proximity to major roads is associated with reduced 

fertility (Gaskins et al., 2018, 2019; Mahalingaiah et al., 2016; Mendola et al., 2017; 

Nieuwenhuijsen et al., 2014; Wesselink et al., 2020; Quraishi et al., 2019). In fact, a previous 

analysis in PRESTO found that living close to major roads and having a higher density of 

major roads around the home was associated with reduced fecundability in the U.S. and 

Canada (Wesselink et al., 2020). There are several potential reasons for the dissimilarity 

between these results and the relatively null results from the current study. First, road 

proximity is an imperfect proxy for traffic-related air pollution. This heterogeneous exposure 

measure includes non-tailpipe emissions, such as road dust and brake wear, and other 

components of traffic, such as noise (OECD, 2020). A growing body of work also shows 

that traffic delay (i.e., congestion) may have its own unique influence on health (Levy et 

al., 2010; Pedde et al., 2017; Willis et al., 2022). Second, features of the built environment 

such as green space or neighborhood context (Gascon et al., 2016) may modify associations 

between environmental hazards and fecundability. We have previously published results that 

demonstrate associations between higher residential green space and improved fecundability 

(Willis et al., 2023) as well as higher neighborhood disadvantage and impaired fecundability 

(Willis et al., 2022). Therefore, other structural factors that are highly correlated with road 

proximity may account for the observed associations.

Our study had several important limitations. First, we relied on interpolated estimates of 

exposure rather than measured values at the location of interest. While we used state-of-the-

art models that have been validated against monitoring data, these models perform better in 

some locations than others. For example, models in both countries tend to perform better 

in urban areas; however, restricting to urban areas did not appreciably change our results. 

In addition, our exposure assessment was residence-based and did not account for indoor 

air pollution exposure or time-activity patterns (i.e., air pollution exposure at locations 

other than the residence) (Chaix et al., 2013; Lane et al., 2013; Weisskopf and Webster, 

2017). Therefore, exposure misclassification could have biased our results based on how 

predictors of exposure misclassification relate to the outcome (e.g., occupational factors, 

socioeconomic status). Finally, although we accounted for residential mobility by updating 

address information throughout follow-up, we did not have information on the precise 

date of address change, which may have resulted in some additional misclassification of 

exposure.

Second, we derived outcome information from self-reported attempt time at enrollment, 

typical cycle length, LMP dates, and pregnancy status. Outcome misclassification could 
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have occurred to the extent that we measured these variables with error. Pregnancy attempt 

time at enrollment may be misclassified, particularly for participants with longer periods 

of time before enrolling. However, a sensitivity analysis restricted to participants with < 3 

cycles of attempt time at enrollment yielded similar results to the main analysis, indicating 

that this is not an important source of bias. In a validation study of self-reported LMP 

dates in PRESTO, participants reported similar LMP dates prospectively on a menstrual 

charting app vs. retrospectively on follow-up questionnaires (Wise et al., 2015). Finally, 

because we did not collect daily measures of urinary human chorionic gonadotropin, we 

almost certainly missed some conceptions that ended in early losses before they could be 

reasonably detected via home pregnancy tests. However, most participants were testing for 

pregnancy at home (95%) and the average gestational weeks at pregnancy detection in 

the cohort was 4.0 (interquartile range: 3.7–4.4), indicating that participants were testing 

early for pregnancy, sometimes before a missed period. Gestational weeks at first positive 

pregnancy test was similar across air pollution exposure categories. Therefore, we expect 

that outcome misclassification was minimal and non-differential with respect to exposure.

As in any observational study, unmeasured confounding is a possibility. Although we 

controlled extensively for individual- and neighborhood-level confounders, there are, for 

example, other environmental exposures, such as ambient noise, which are correlated with 

the exposure and for which we could not adjust. Given the broad geographic distribution of 

the cohort and recruitment over a seven-year period, our results may also be biased due to 

residual confounding from secular trends by space and/or time.

Our study population comprised North American pregnancy planners who were recruited 

via the internet. Our results may not generalize to geographic regions with higher levels of 

ambient air pollution. We have previously demonstrated that internet-based recruitment of 

participants should not bias etiologic measures of association based on internal comparisons 

(Hatch et al., 2016). However, pregnancy planners tend to have higher socioeconomic 

status compared with non-planners, and although we did observe some socioeconomic 

heterogeneity in our cohort, most participants were college educated and had incomes 

of >$75,000. Ambient exposure to air pollution may have less of an effect in high 

socioeconomic populations due to housing characteristics, residential location, or other 

protective built environment features that could reduce personal exposure to pollution 

of ambient origin. Therefore, our results may not generalize to populations with lower 

socioeconomic status. Although we found that the association of air pollution and fertility 

was relatively consistent across strata of educational attainment and income, we had limited 

power to assess effect modification in the lowest socioeconomic status group.

In summary, our results indicate that relatively low levels of ambient PM2.5, NO2, and O3 

during the year before the pregnancy attempt, averaged across each menstrual cycle, and 

averaged across the preconception period are not appreciably related to fecundability. It 

remains possible that exposure to higher levels of air pollution (beyond what we observed 

in this study population), exposures during specific critical windows during the early 

reproductive process, and/or other components of air pollution (e.g., components of PM2.5, 

heavy metals) may have an adverse effect on fertility.
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Fig. 1. 
Associations of PM2.5 concentrations (annual average during year before baseline 

[left column], time-varying menstrual cycle-specific [middle column], and time-varying 

preconception average [right column]) with fecundability, fit using restricted cubic splines, 

United States (top row) and Canada (bottom row), PRESTO, 2013–2019. Splines are 

trimmed at the 99th percentile and have three knots each at the 10th, 50th, and 90th 

percentiles. Models are adjusted for age, household income, education, parity, race/ethnicity, 

population with 5,000 m, annual maximum NDVI, annual average temperature, census tract 

median household income, % of census tract with < high school education, % of census tract 

non-Hispanic white, season, calendar year, geographic region, and co-pollutants.
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Fig. 2. 
Associations of NO2 concentrations (annual average during year before baseline [left 

column], time-varying menstrual cycle-specific [middle column], and time-varying 

preconception average [right column]) with fecundability, fit using restricted cubic splines, 

United States (top row) and Canada (bottom row), PRESTO, 2013–2019. Splines are 

trimmed at the 99th percentile and have three knots each at the 10th, 50th, and 90th 

percentiles. Models are adjusted for age, household income, education, parity, race/ethnicity, 

population with 5,000 m, annual maximum NDVI, annual average temperature, census tract 

median household income, % of census tract with < high school education, % of census tract 

non-Hispanic white, season, calendar year, geographic region, and co-pollutants.
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Fig. 3. 
Associations of O3 concentrations (annual average during year before baseline [left column], 

time-varying menstrual cycle-specific [middle column], and time-varying preconception 

average [right column]) with fecundability, fit using restricted cubic splines, United States 

(top row) and Canada (bottom row), PRESTO, 2013–2019. Splines are trimmed at the 99th 

percentile and have three knots each at the 10th, 50th, and 90th percentiles. Models are 

adjusted for age, household income, education, parity, race/ethnicity, population with 5,000 

m, annual maximum NDVI, annual average temperature, census tract median household 

income, % of census tract with < high school education, % of census tract non-Hispanic 

white, season, calendar year, geographic region, and co-pollutants.
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