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Abstract 
Introduction 
Instrumental variable (IV) analysis 
potentially accounts for unmeasured 
confounding in observational studies, 
but it can also control for non-
compliance in randomized trials. 
IV analysis requires that the IV is 
related to treatment status, yet 
independent of confounders of the 
treatment-outcome relation. This 
implies that in pharmaco-
epidemiologic scenarios where IV 
analysis is needed the most (because 
of strong unmeasured confounding), 
IVs will typically be weakly associated 
with treatment. Furthermore, IV 
analysis assumes that the IV affects 
the outcome only through the 
treatment under study. A common IV 
in pharmacoepidemiological studies is 
the physician prescribing preference, 
which for the latter assumption 
implies that physicians only differ in 
their preference for the treatment 
under study, but they do not differ 
with respect to e.g. preferences for 
concomitant treatments, skills, 
organization of their practice, etc. 
Assumptions underlying IV 
assumptions need thorough 
evaluation before proceeding with IV 

analyses. Here, IV analysis is 
illustrated, its key assumptions are 
illustrated by a randomized trial with 
non-compliance, and the utility of IVs 
for observational pharmaco-
epidemiologic studies is discussed. 
Conclusion 
The validity and applicability of IV 
analysis in observational 
pharmacoepidemiologic studies still 
have to be established, which requires 
more applications of IV analysis and 
debate on the likelihood of the 
assumptions underlying IV analysis. 
  

Introduction 
Observational studies of the effects of 
medical interventions (e.g. 
pharmacological treatment) are prone 
to confounding. Different methods are 
available to control for confounding, 
including restriction, matching, 
multivariable regression analysis, 
propensity score analysis, and inverse 
probability weighting.1  
   What these methods have in 
common, is that they can control for 
measured confounders, but not for 
unmeasured confounders.  
   Instrumental variable (IV) analysis, 
on the other hand, has been proposed 
as a method to control for 
unmeasured confounding in 
observational studies. In this review, 
we first described IV analysis 
conceptually and illustrate it by non-
compliance in a randomized trial. 
Next, we will discuss the limitations of 
commonly used IVs to control for 
unmeasured confounding in 
pharmacoepidemiology. 
  

Discussion 
The authors have referenced some of 
their own studies in this review. The 
protocols of these studies have been 
approved by the relevant ethics 
committees related to the institution 
in which they were performed. 

Causal diagrams of observational 
studies and randomized trials 
Figure 1 shows several directed acyclic 
graphs (DAGs), also referred to as 
causal diagrams. For a detailed 
explanation of DAGs, we refer to the 
literature.2,3 Here, it suffices that causal 
relations between variables are 
represented by directed arrows from 
cause to effect and all causal relations 
of the treatment and outcome are 
represented. The DAG in figure 1a 
shows the typical structure of 
confounding. The allocation of 
treatment (T, e.g. treatment with an 
ACE-inhibitor) and outcome (Y, e.g. 
myocardial infarction) share a common 
cause (C, e.g. pre-treatment blood 
pressure). There is a so-called ‘back-
door path’ from treatment to outcome, 
via the confounder C. Ignoring this 
back-door path when estimating the 
relation between treatment and 
outcome may result in a bias (i.e., 
confounding). 
   However, if one of the arrows from 
the confounder to either treatment or 
outcome is absent, there is no back-
door path and hence no confounding. 
This is depicted in figure 1b, which 
represents an ideal randomized 
controlled trial. Because treatment 
allocation is random, it is independent 
of subject characteristics and hence 
there is no arrow from C to T. 
   In reality, in a randomized trial, 
adherence to the randomly allocated 
treatment may not be perfect. Hence, 
treatment allocation (A) and actual 
treatment status (T) may not be 
identical (Figure 1c). Note that 
treatment allocation is still a random 
process (hence independent of C), yet 
treatment use need not be a random 
process. The latter is reflected by the 
arrow between C and T. An analysis of 
actual treatment may therefore be 
biased (due to confounding by C), yet 
an analysis of treatment allocation (i.e., 
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intention-to-treat analysis) will on 
average be unbiased. 
  
Non-compliance in a randomized 
trial 
The intention-to-treat (ITT) analysis 
of a randomized trial provides an 
unbiased estimate of the effect of 
treatment allocation, rather than the 
effect of actual treatment use. If the 
treatment is effective, the ITT analysis 
underestimates the effect of treatment 
use, when there is considerable non-
compliance.4 However, by taking the 
extent of non-compliance into 
account, one can estimate what the 
treatment effect would be under 
perfect compliance. We illustrate this 
using numerical examples. 
   Table 1 shows three numerical 
examples of randomized trials. In the 
first scenario, there is perfect 
compliance: all subjects allocated to 
the experimental treatment actually 
receive the experimental treatment 
and all allocated to the control 
treatment receive the control 
treatment. Hence, the estimate of the 
effect of treatment allocation equals 
the effect estimate of actual treatment 
received: risk difference (RD) = -0.25. 
   The second scenario is that of a 
randomized trial with non-
compliance: 60% and 80% of those 
assigned the control treatment and 
the experimental treatment, 
respectively, comply with the assigned 
treatment.  
   The ITT effect can be estimated as 
RD = 300/1000 – 400/1000 = -0.1, 
which underestimates the effect that 
would be observed under perfect 
compliance (scenario 1). To obtain the 
effect that would be observed under 
perfect compliance, the ITT effect 
needs to be extrapolated to a situation 
with full compliance.  
   This can be achieved by dividing the 
ITT effect by the difference in the 
observed probabilities of receiving 
experimental treatment between the 
two treatment allocation groups: -0.1 
/ (800/1000 – 400/1000) = -0.1 / 0.4 
= -0.25, which indeed equals the effect 
that is observed under perfect 
compliance.5,6 
   A graphical representation of this 
procedure is given in figure 2. The 

observed risks among the two 
treatment allocation groups (0.4 for 
the control group and 0.3 for the 
experimental group) are plotted 
against the probabilities of actually 
receiving experimental treatment 
among those two groups (0.4 and 0.8 
for the control and experimental 
treatment groups, respectively). These 

two points are then connected. The risk 
difference that would be observed 
under perfect compliance can be 
obtained by extrapolating this line to 
the point at which the probability of 
receiving experimental treatment is 
either 0 or 1. The difference between 
those two extremes can be read off the 
y-axis and is the risk difference that 

Figure 1: Caption: Directed acyclic graphs of randomized and observational studies. 
Legend: Abbreviations: T: treatment; Y: outcome; C: confounders; A: random treatment 
assignment, IV: instrumental variable. SNP: single-nucleotide polymorphism. 

 
Figure 2: Caption: Graphical representation of IV analysis of a randomized 
trial with non-compliance. 
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would be observed under perfect 
compliance.  
   In scenario 2, compliance differs 
between treatment arms, but within 
treatment arms it is a random process. 
However, the method to account for 
non-compliance that was described 
also works if actual treatment status 
depends on random treatment 
allocation as well as risk factors for 
the outcome (the DAG in figure 1c), 
which is illustrated by scenario 3 
(Table 1). The actual treatment 
received now depends on treatment 
allocation, but also on blood pressure: 
regardless of treatment allocation, 
those with a high pre-treatment blood 
pressure are more likely to use 
experimental treatment compared to 
those with a low blood pressure. Note 
that the distribution of blood pressure 
is the same in the two randomization 
groups. The ITT effect (RD = 
480/1000 – 555/1000 = -0.075) again 
underestimates the treatment effect 
that would be observed under perfect 
compliance. However, the ITT effect 
can be adjusted by the difference in 
the observed probabilities of receiving 
experimental treatment between the 
two treatment allocation groups to 
obtain the treatment effect under 
perfect compliance: -0.075 / 

(680/1000 – 380/1000) = -0.075 / 0.3 
= -0.25. 
   In scenario 3, an analysis that is 
stratified by blood pressure will also 
yield an unbiased estimate of the 
treatment effect under perfect 
compliance. However, this obviously 
requires that blood pressure is 
actually measured, whereas the 
analysis outlined in scenario 2  above 
can also be conducted when blood 
pressure is unmeasured; hence in the 
presence of unmeasured confounding. 
 
Assumptions of instrumental 
variable analysis 
The procedure outlined above to 
account for non-compliance in 
randomized trials (in scenario 2 
above) is a particular form of IV 
analysis. IV analysis can account for 
non-compliance in a randomized trial 
to the extent that there is some 
contrast in the probability of 
experimental treatment use between 
the two randomization groups.7  
   This is the first main assumption of 
IV analysis, which can be summarized 
as: an IV predicts treatment status 
(assumption 1). Several statistical 
measures are available to quantify the 
relation between IV and treatment, 

including correlation, odds ratio, and 
proportion of explained variance.8,9  
   The importance of this assumption 
can be easily understood by looking at 
figure 2. If the two points are very close 
to each other, extrapolating the line 
between the two points will become a 
very inaccurate process. The further 
away these points are, the more precise 
the extrapolation will be. A weak 
association between IV and treatment 
becomes less influential in larger 
samples. Although the two point are 
close to each other, they have a large 
precision (due to the large sample size) 
which will attenuate the instability of 
the extrapolation. The relation between 
IV and treatment status is reflected by 
the arrow between these variables in 
the DAGs in figure 1. 
   There are two other main 
assumptions underlying IV analysis: an 
IV is independent of confounders of the 
treatment-outcome relation 
(assumption 2); and an IV affects the 
outcome only through the treatment 
(assumption 3). For the DAGs in figures 
1b and 1c, this implies that the 
observed effect of treatment 
assignment on the outcome runs 
completely through the indicated 
arrows, i.e., there are no unrepresented 
associations (arrows) between the IV 

 
Table 1: Caption: Numerical example of trials with no or partial non-compliance.  

Scenario 1: no non-compliance 
Treatment assigned Treatment received No. subjects No. events 

T = 0 T = 0 1000 500 

T = 1 T = 1 1000 250 

Scenario 2: partial non-compliance, unrelated to any cause of the outcome 
Treatment assigned Treatment received No. subjects No. events 

T = 0 T = 0 600 300 

  T = 1 400 100 

T = 1 T = 0 200 100 

  T = 1 800 200 

Scenario 3: partial non-compliance, related to blood pressure at baseline 

Treatment assigned Blood pressure Treatment received No. subjects No. events 

T = 0 High T = 0 300 225 

   T = 1 300 150 

  Low T = 0 320 160 

   T = 1 80 20 

T = 1 High T = 0 120 90 

   T = 1 480 240 

 Low T = 0 200 100 

  T = 1 200 50 

Abbreviations: T = 0: control treatment; T = 1: experimental treatment. 
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and the outcome (assumption 3), nor 
are there any back-door paths from 
the IV to treatment status or from the 
IV to the outcome (assumption 2). In a 
randomized trial, blinding is used in 
an attempt to meet assumption 3 
(which ensures that treatment arms 
will remain comparable during follow-
up), whereas randomization is used to 
the meet assumption 2. 
   A causal effect can still be estimated 
if the assumption of ‘no relation 
between IV and confounders’ 
(assumption 2) can be relaxed. There 
should be no unmeasured 
confounders of relation between IV 
and treatment status and the relation 
between IV and outcome. In the 
numerical examples above (scenario 
2), the treatment effect was estimated 
as the ratio of the ITT effect and the 
relation between IV status and 
treatment status. If either risk 
difference is biased (by unmeasured 
confounding), their ratio may be 
biased as well. However, in the 
absence of other biases, if both 
elements of the ratio are adjusted for 
measured confounders of those risk 
differences, the ratio may yield an 
unbiased estimate of the treatment 
effect. The assumption of no 
unmeasured confounders cannot be 
proven, but it may be falsified in the 
data.10  
   An observed imbalance in measured 
confounders within IV strata may 
suggest that unmeasured confounders 
are imbalanced as well, thus 
invalidating IV analysis. Importantly, 
the bias due to unmeasured 
confounding can be much larger when 
conducting IV analysis compared to 
conventional analysis.10 
   The ratio method outlined above is 
just one of many possible statistical 
approaches to IV analysis.  
  Furthermore, additional assumptions 
are required to interpret the 
estimated IV effect as causal, for 
example assumptions related to 
homogeneity of the treatment effect.    
   These additional assumptions as 
well as more flexible IV analytical 
methods are beyond the scope of this 
review and we refer to the literature 
for more details.11,12,13,14,15,16,17 
 

Instrumental variables in 
observational studies 
The application of IV analysis can be 
extended beyond non-compliance in 
randomized trials. In fact, randomized 
trials are just one of many possible 
fields of application. In observational 
studies, a variable that is not 
randomly allocated by the 
investigator, yet fulfils the 
assumptions of an IV, can act in the 
same way as random treatment 
allocation in a randomized trial.  
   For example, in a study of the 
relation between HDL-cholesterol 
levels and myocardial infarction, a 
genetic polymorphism that increases 
HDL-cholesterol levels (and does not 
affect LDL-cholesterol or other 
cardiovascular risk factors) was used 
as IV.18 Genetic polymorphisms are 
randomly distributed in populations 
and are in that respect similar to 

random treatment allocation in a 
randomized trial (Figure 1d). Studies 
that make use of this phenomenon are 
called Mendelian randomization 
studies.18,19,20  
   In contrast to randomized trials, 
however, the relation between the 
genotype (e.g. polymorphisms) and 
phenotype (e.g. cholesterol-levels) is 
typically weak in Mendelian 
randomization studies, therefore 
requiring (very) large sample sizes,21,22 
as explained above. 
   Full knowledge of the biological 
mechanism by which the genetic 
polymorphism acts (e.g. does the 
polymorphism only affect HDL-
cholesterol levels or also other 
biomarkers which may affect the risk of 
the myocardial infarction) is necessary 
to be confident that the assumptions of 
IV analysis hold.23 

 

 
Figure 3: Caption: Definitions of common ways of building the instrumental 
variable physician’s prescribing preference. 
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Instrumental variables in 
pharmacoepidemiology 
Pharmacoepidemiologic studies are 
often conducted in large databases of 
electronic healthcare records, which 
provide detailed information about 
for example co-morbidity and co-
medication, but often have limited 
information about health behaviour 
(e.g., smoking, exercise, and dietary 
habits). The latter leads to a potential 
for unmeasured confounding, which 
may be overcome by IV analysis. 
   A review of IV analysis in 
pharmacoepidemiology, published in 
2011, identified 5 types of 
instrumental variables that are 
typically used: regional variation, 
facility prescribing patterns, physician 
preference, patient history / financial 
status, calendar time.24 Facility 
prescribing patterns together with 
physician preference are together the 
most commonly used IV in 
pharmacoepidemiology.  
   In the remainder we focus on the IV 
physician prescribing preference (or 
physician preference). 
   Figure 1e shows the assumed causal 
structure of a study using physician 
preference as an IV The IV physician 
preference can be defined in different 
ways (Figure 3). For example, in a 
study in which two drugs are 
compared against each other (A vs. B), 
all subjects treated with either A or B, 
from a number of participating 
practices, are enrolled in the study. 
For each physician the preference can 
then be defined as the number of 
prescriptions of drug A (nA) 
compared to all prescriptions (nA + 
nB) made by that physician (third 
column in figure 3). If the preference 
changes over time, one overall 
preference per physician may not be 
appropriate.25,26  
   Instead, for each physician the 
percentage of prescriptions of drug A 
can be determined per year, or per 
quarter, to better account for possible 
changes over time. Ultimately, the 
prescription that was issued for the 
last patient before the current one 
could be used as a proxy for the 
preference of a physician at that 
moment in time.25,27 If the last patient 
was prescribed drug A, then 

apparently the physician’s preference 
at that moment is in favor of drug A 
(fourth column in figure 3). 
 
Interplay between IV assumptions 
When applying IV analysis, 
researchers must demonstrate, or 
explicitly argue why, the assumptions 
of IV analysis hold. It is 
straightforward to check whether 
physician preference is indeed related 
to actual treatment. For example, IV 
status should predict to a 
considerable extent the actual 
treatment status. It is hard to provide 
cut-points that universally apply, but 
simulations suggest that for example 
the odds ratio between a binary IV 
and a binary treatment in a typical 
pharmacoepidemiologic study should 
exceed 2 (note that this value depends 
on sample size, but not on statistical 
significance).9  
   The assumption of independence 
between IV and confounders can be 
checked at least for the measured 
confounders, by making a comparison 
of confounders between levels of 
physician preference.10 
   According to the DAGs in Figure 1e, 
both the IV and potential confounders 
of the treatment-outcome relation 
affect actual treatment status. This 
means that if the proportion of 
explained variation in the treatment 
due to the IV is relatively large, there 
is little variation in treatment left that 
can be attributed to the 
confounders.28 And vice versa, if the 
proportion of explained variation in 
the treatment due to confounders is 
relatively large, there is little variation 
in treatment left that can be attributed 
to the IV. Hence, in case of strong 
confounding, any IV that is 
independent of the confounders will 
only be weakly related to treatment. 
Only if the amount of confounding is 
limited, one may identify a strong IV.  
   An exception may be a situation in 
which the confounder-treatment 
association is relatively weak, yet the 
amount of confounding is 
nevertheless substantial due to a very 
strong confounder-outcome 
association. Thus, particularly in those 
situations where IV analysis is needed 
the most to deal with (strong) 

unmeasured confounding, IVs will 
typically be weakly associated with 
treatment and thus require large 
sample sizes. 
   When treatment options are clearly 
spelled-out in clinical guidelines, any 
variation in prescribing rates between 
physicians will likely be small. In those 
situations in which the preference of a 
physician can lead to large variations in 
prescribing behaviour, apparently 
guidelines aren’t that strict, which may 
be because there is clinical equipoise; 
i.e. there are no apparent risks or 
benefits related to one drug compared 
to the other. Consequently, treatment 
will probably not be prescribed very 
selectively, which means that the 
potential for confounding will be small. 
   The IV assumption that physician 
preference affects the outcome only 
through the treatment cannot be 
checked in the data. This assumption 
implies that physicians only differ in 
their preference for the treatment 
under study, but they do not differ with 
respect to all kinds of other aspects (e.g. 
preferences for concomitant 
treatments, skills, organization of their 
practice, etc) that may affect the 
outcome.12 If they only differ in that 
respect, however, differences in 
preferences will likely be small and 
hence the IV will be weakly related to 
treatment status.  
   On the other hand, in case of really 
distinct preferences (strong IV), 
physicians will likely differ in more 
respects than only their preference for 
that particular treatment, which 
impairs the validity of the IV physician 
preference. Obviously, physicians can 
be different in terms of e.g. sex and age. 
But as long as the sex and age of a 
physician are not related to the 
outcome, such differences will not 
affect the validity of the IV. 
  

Conclusion 
The use of instrumental variable 
analysis is clearly indicated in trials 
with non-compliance and in Mendelian 
randomization studies.  
   However, its validity and applicability 
in observational studies of the effects of 
(pharmacological) treatments still have 
to be established. This requires more 
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applied studies using different types 
of possible IVs.    
   For each of these, the assumptions 
underlying IV analysis have to be 
thoroughly assessed and those 
assumptions that cannot be verified 
using the data have to be debated.29  
   Importantly, physician preference is 
not the only possible IV for 
pharmacoepidemiologic studies.  
Differential implementation of 
guidelines between (similar!) regions, 
or evaluating the implementation of 
guidelines (before-after comparison) 
may provide valid IVs. We propose 
that new IVs are considered that allow 
for estimating unbiased treatment 
effects of safety and effectiveness in 
pharmacoepidemiology. 
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